
Workflows for reproducible research
in computational neuroscience

Release 0.3

Andrew P. Davison

July 11, 2013





CONTENTS

i



ii



Workflows for reproducible research in computational neuroscience, Release 0.3

Andrew Davison

Unité de Neurosciences, Information et Complexité (UNIC), Centre National de la Recherche Scien-
tifique, Gif sur Yvette, France. http://andrewdavison.info

Notes for a tutorial given at CNS 2012 (http://www.cnsorg.org/cns-2012-atlantadecatur).

Version 0.3

July 23, 2012

CONTENTS 1

http://andrewdavison.info
http://www.cnsorg.org/cns-2012-atlantadecatur


Workflows for reproducible research in computational neuroscience, Release 0.3

2 CONTENTS



CHAPTER

ONE

ABSTRACT

Reliably repeating previous experiments, one of the cornerstones of the scientific method, ought to be easy in
computational neuroscience, given that computers are deterministic, not suffering from the problems of inter-
subject and trial-to-trial variability that make reproduction of biological experiments so challenging. In general,
however, it is not at all easy, especially when running someone else’s code, or when months or years have elapsed
since the original experiment.

The failure to routinely achieve replicability in computational neuroscience (probably in computational science in
general, see Donoho et al., 2009 1) has important implications for both the credibility of the field and for its rate of
progress (since reuse of existing code is fundamental to good software engineering). For individual researchers,
as the example of ModelDB has shown, sharing reliable code enhances reputation and leads to increased impact.

In this tutorial we will identify the reasons for the difficulties often encountered in reproducing computational
experiments, and some best practices for making our work more reliable and more easily reproducible by ourselves
and others (without adding a huge burden to either our day-to-day research or the publication process).

We will then cover a number of tools that can facilitate a reproducible workflow and allow tracking the provenance
of results from a published article back through intermediate analysis stages to the original models and simulations.
The tools that will be covered include Git (http://git-scm.com/), Mercurial (http://mercurial.selenic.com/), Sumatra
(http://neuralensemble.org/sumatra) and VisTrails (http://www.vistrails.org/).

1 Donoho, D.L., Maleki, A., Rahman, I.U., Shahram, M. and Stodden, V. (2009) 15 Years of Reproducible Research in Computational
Harmonic Analysis, Computing in Science and Engineering 11:8-18. doi:10.1109/MCSE.2009.15 (http://dx.doi.org/10.1109/MCSE.2009.15)

3

http://git-scm.com/
http://mercurial.selenic.com/
http://neuralensemble.org/sumatra
http://www.vistrails.org/
http://dx.doi.org/10.1109/MCSE.2009.15


Workflows for reproducible research in computational neuroscience, Release 0.3

4 Chapter 1. Abstract



CHAPTER

TWO

CONTENTS

2.1 Why reproducible research?

2.1.1 Foundations of science

Reproducibility is one of the foundation stones of the scientific method. From this follows the obligation for
scientists to include enough information in their publications to enable others to independently reproduce the
finding.

But how much information is enough information?

There is increasing concern that for science that relies on computation (i.e. almost all of current science), tra-
ditional publishing methods do not allow enough information to be included, making independent reproduction
either extremely difficult or impossible.

What is worse, in many cases scientists cannot even reproduce their own results, leading to what some are calling
a “credibility crisis” for computation-based research.

2.1.2 The credibility crisis

Climategate

In November 2009 a server at the Climatic Research Unit (http://www.cru.uea.ac.uk/) at the University of East
Anglia was hacked, and several thousand e-mails and other files were copied and distributed on the Web.

Among the files was one called “HARRY_READ_ME.txt”, a 15000-line file describing the odyssey of a researcher
at the CRU trying (with limited success) to reproduce some of the results previously published by the Unit, based
on 11000 files from two old filesystems.

The protein structure story

In December 2006, Geoffrey Chang, a crystallographer at the Scripps Institute, retracted
(http://www.sciencemag.org/content/314/5807/1875.2.full) 3 Science articles, a Nature article, a PNAS ar-
ticle and a J. Mol. Biol. article. The retraction states:

“An in-house data reduction program introduced a change in sign for anomalous differences. This
program, which was not part of a conventional data processing package, converted the anomalous
pairs (I+ and I-) to (F- and F+), thereby introducing a sign change. As the diffraction data collected
for each set of MsbA crystals and for the EmrE crystals were processed with the same program, the
structures reported ... had the wrong hand.

...

We very sincerely regret the confusion that these papers have caused and, in particular, subsequent
research efforts that were unproductive as a result of our original findings.”

5

http://www.cru.uea.ac.uk/
http://www.sciencemag.org/content/314/5807/1875.2.full


Workflows for reproducible research in computational neuroscience, Release 0.3

Apparently, the in-house program was “legacy software inherited from a neighboring lab”.

The state of reproducibility in computational neuroscience

Thankfully, computational neuroscience is not so politically charged as climate science, nor do most computa-
tional neuroscience results have the same consequences for medicine and drug development as incorrect protein
structures, but:

1. this may change in future;

2. these are not excuses not to take reproducibility seriously.

There have been no systematic studies, as far as I am aware, of the level of reproducibility of published computa-
tional neuroscience studies. One reason we might be able to have some confidence is the existence of ModelDB
(http://senselab.med.yale.edu/modeldb/), which contains the code for more than 700 published computational neu-
roscience models. One of the critera for adding an entry to the database is that the code reproduce at least one
figure from the paper: this is verified by the curator.

2.1.3 A note on terminology: reproduction, replication and reuse

The term “reproducibility” covers a wide range of activities, from a completely independent repeat of the experi-
ment, using only the “Materials and Methods” section of the article, with no access to the original authors’ source
code, to the original scientist re-running the same code on the same machine. Some of the other points on the
spectrum are illustrated in the following figure:

Completely independent reproduction is of course the gold standard. Some commentators have expressed the
opinion that time or effort spent on making other points on the spectrum (sometimes described as “replication”
rather than “reproduction”) easier is either wasted, or worse, counterproductive.

This point of view tends to suppose that “mere” replication is simple, which is generally not the case, and ignores:

• the case where there are discrepancies between what is stated in the Material and Methods and what is in
the original code;

• the case where there is not enough information in the article to reproduce the experiment;

• the considerable benefits of code reuse.

2.1.4 What makes it hard to replicate your own research?

“I thought I used the same parameters but I’m getting different results”

“I can’t remember which version of the code I used to generate figure 6”

6 Chapter 2. Contents

http://senselab.med.yale.edu/modeldb/


Workflows for reproducible research in computational neuroscience, Release 0.3

“The new student wants to reuse that model I published three years ago but he can’t reproduce the
figures”

“It worked yesterday”

“Why did I do that?”

None of these are real quotes, but they distill a lot of similar laments I’ve heard from myself and colleagues. When
I give talks about reproducible research I often show these quotes, and they always elicit laughter and rueful smiles
of recognition, irrespective of the scientific specialty of the audience members.

It is a common experience among computational scientists that replicating our own results, especially with the
passage of time (but sometimes only hours or days later), is not always easy, and sometimes impossible.

Why is that?

I think we can identify three general classes of reasons:

Complexity As we tackle more and more challenging problems (due to the progress of science and due to Moore’s
Law, which allows us to buy more and more powerful hardware), the complexity of our code and computing
environment tends to increase. This can lead to an excessive dependence of our results on small details and
a situation where small changes have big effects.

Entropy both our computing environment (hardware, operating system, compilers, ...) and the versions of li-
braries that we use in our code change over time. Every time you upgrade your operating system or buy a
new computer, the likelihood that you can replicate your old results goes down.

Memory limitations

By this I mean human, not computer memory limitations. Conscientious scientists write down
the details of what they do in their lab notebooks, but often there are so many details that it’s not
possible to note them all, or things which seem implicit and obvious at the time are not written
down and are later forgetten.

What can we do about it?

That is the point of this tutorial.

2.1.5 What makes it hard to reproduce other people’s research?

Here again we need to distinguish between independent reproduction based only on the published article without
access to the original source code, and replication/ reimplementation with access to the code.

In the former case, the main barrier is inadequate (incorrect or incomplete) descriptions of the model and/or anal-
ysis procedure in the paper, including supplementary material. Nordlie et al. (2009) 1 propose “good model
description practice” for computational neuroscience papers which aims at ensuring model descriptions are suffi-
ciently complete for reproduction.

Where the code is available, the difficulties are essentially the same as when trying to replicate your own results
from your own code, but more acute:

• you don’t have either the lab notebooks or the implicit knowledge of the original authors in trying to under-
stand the code;

• you may not have access to all of the libraries/tools used by the original authors (where these are in-house
or expensive commercial software).

2.1.6 Aims of this tutorial

I hope I have convinced you, if you were unconvinced already, that reproducibility of computational research is:

• important;

• often not easy to achieve (or not as easy as it should be).

1 Nordlie E., Gewaltig M.-O. and Plesser H.E. (2009) PLoS Comp Biol 5(8): e1000456. doi:10.1371/journal.pcbi.1000456

2.1. Why reproducible research? 7



Workflows for reproducible research in computational neuroscience, Release 0.3

In this tutorial I will focus on replicability, in the sense defined above, rather than independent reproducibility, i.e.
on being able to replicate your own results, or those of your students, postdocs or collaborators, weeks, months or
years later.

Even if you choose not to share your code with others (I think you should, both for the reasons of credibility
outlined above and because of anecdotal evidence that sharing code increases citations of your papers, but I
understand that people do have fears about doing so), investing the effort to improve replicability of your results
will pay dividends:

• when you have to modify and regenerate figures in response to reviewers’ comments;

• when a student graduates and leaves the lab;

• when you want to start a new project that builds on existing work;

• and it could save you from painful retractions

• or from crucifiction in the media!

This tutorial will therefore expose you to, or remind you about, tools that can help to address the problems of
complexity, entropy and memory limitations identified above, and so help to answer the question “How can we
make it easier to reproduce our own research?”

2.2 Best practices for reproducible research

2.2.1 Use version control

See Version control.

2.2.2 Test your code

See Testing.

2.2.3 Prioritize code robustness

By “robustness” here, I mean insensitivity to the precise details of the code and environment: if you try to make
one part of the code run faster, does the rest of the code have to be changed as well? If you change to a different
Linux distribution, or upgrade your operating system, does the code still run and do you get the same results.

Strategies for more robust code are widely employed in professional software development and have been de-
scribed in many places [e.g. S. McConnell, Code Complete, 2nd ed., Microsoft Press, 2004.] They include:

• reducing the tightness of the coupling between different parts of the code through a modular design and
well-defined interfaces;

• building on established, widely used, well-tested and easy-to-install libraries; and

• writing test suites.

In particular, you should design your code to be easily understood by others (where “others” can also include
“yourself-in-six-months-time”):

• write comments explaining anything slightly complex, or why a particular choice was made;

• write clear documentation;

• don’t be too clever.

On the latter point, Brian Kernighan said:

“Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as
cleverly as possible, you are, by definition, not smart enough to debug it.“

8 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

How far should you go in trying to make your code better? Making code more robust has costs in time and
manpower, which might not be worth incurring for scientific code with a limited number of users. At the same
time, making these time investments up front can save a lot of time later. I don’t have any good guidelines for
knowing what the right balance is, other than to step back from the project from time to time, think about how
much effort you’ve expended, and decide whether it feels like you’re making too much, or not enough, effort to
make your code more reproducible given your goals (e.g., publication).

2.2.4 Maintain a consistent, repeatable computing environment

If you’re moving a computation to a new system, it should be simple and straightforward to set up the environment
identically (or nearly so) to that of the original machine. This suggests either using a package-management system
- for example, the Debian, Red Hat, or MacPorts systems - or a configuration-management tool (such as Puppet,
Chef, or Fabric).

The former provide prebuilt, well-tested software packages in central repositories, thus avoiding the vagaries
of downloading and compiling packages from diverse sources and being faster to deploy. The latter enable the
definition of recipes for machine setup, which is particularly important when using software that isn’t available
in a package-management system, whether because it hasn’t been packaged (for example, because it isn’t widely
used or is developed locally for internal use) or the package manager’s version is too outdated.

2.2.5 Separate code from configuration

It’s good practice to cleanly separate code from the configuration and parameters. There are several reasons for
this:

• the configuration and parameters are changed more frequently than the code, so different recording tools
are most appropriate for each - for example, using a VCS for the code and a database for the parameters;

• the parameters are directly modified or controlled by the end user, but the code might not be - this means
that parameters can be controlled through different interfaces (configuration files or graphical interfaces);

• separating the parameters ensures that changes are made in a single place, rather than spread throughout a
code base; and

• the parameters are useful for searching, filtering, and comparing computations made with the same model
or analysis method but with different parameters, and storing the parameters separately makes such efforts
easier.

2.2.6 Separate model definition from simulation experiment description

Another example of a modular design approach that is specific to modelling and simulation-based science is to
completely separate code defining the model from code implementing the experiment you’re doing with the model
(what variables to record, how long to simulate the model, what stimulation is used, etc.). In the field of Systems
Biology, they even have two separate languages, SBML and SED-ML, for these two tasks.

2.2.7 Share your code

(more on this in the next update to these notes)

2.3 Version control

2.3.1 Basic ideas

Any time multiple versions of a document exist, whether due to a document changing over time, or because
multiple authors are working on it, some kind of version control is needed.

2.3. Version control 9



Workflows for reproducible research in computational neuroscience, Release 0.3

Version control allows:

• accessing any version from the original to the most recent;

• seeing what has changed from one version to the next;

• giving a label of some kind to distinguish a particular version.

2.3.2 Examples of version control systems

The simplest method of version control is probably the most widely used in science: changing the file name.

(http://www.phdcomics.com/comics.php?f=1323)

Figure 2.1: from “Piled Higher and Deeper” by Jorge Cham www.phdcomics.com

Other examples include:

• “track changes” in Microsoft Word

• Time Machine in Mac OS X

• versioning in Dropbox, Google Drive

• formal version control systems such as CVS, Subversion, Mercurial, Git

2.3.3 The importance of tracking projects, not individual files

Early version control systems, such as CVS, track each file separately - each file has its own version number. The
same is true of Dropbox, Microsoft Word.

This is a problem when you make changes to several files at once, and the changes in one file depend on changes
in another.

In modern version control systems, and in backup-based systems such as Time Machine, entire directory trees are
tracked as a unit, which means that each version corresponds to the state of an entire project at a point in time.s

2.3.4 Advantages of formal version control systems

• explicit version number for each version

• easy to switch between versions

• easy to see changes between versions

• tools to help merge incompatible changes

In the next sections, we will use Mercurial (http://mercurial.selenic.com), one of the most commonly used, modern
version control systems, to introduce the principles of version control. We will use Mercurial’s command-line in-
terface because it is easy to use, and widely used. Following this, we will briefly discuss Git (http://git-scm.com/)
and Subversion (http://subversion.apache.org/), two other widely-used version control systems, as well as graphi-
cal user interfaces for version control.

2.3.5 Installing Mercurial

Mercurial is available for Linux, Mac OS X, Windows, and assorted flavours of UNIX. For Linux, it
will certainly be available in your package manager. For Windows and Mac OS X, download from
http://mercurial.selenic.com/wiki/Download

Once you’ve installed it, you should create a file named .hgrc in your home directory, as follows:

10 Chapter 2. Contents

http://www.phdcomics.com/comics.php?f=1323
http://mercurial.selenic.com
http://git-scm.com/
http://subversion.apache.org/
http://mercurial.selenic.com/wiki/Download


Workflows for reproducible research in computational neuroscience, Release 0.3

[ui]
username = Andrew Davison <andrew.davison@unic.cnrs-gif.fr>

2.3.6 Creating a repository

We start by introducing two concepts:

Working copy the set of files that you are currently working on

Repository a “database” containing the entire history of your project (all versions)

As an example, we will use the Brian code from this paper:

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, et al. (2007)
Simulation of networks of spiking neurons: A review of tools and strategies. J Comp Neurosci 23:349-98

available from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319

$ unzip destexhe_benchmarks.zip
$ cd destexhe_benchmarks
$ cp -r Brian ~/my_network_model
$ cd ~/my_network_model
$ ls
COBA.py COBAHH.py CUBA.py README.txt

We’re going to take this code as the starting point for our own project, and we want to keep track of the changes
we make.

The first step is to create a repository, where all the versions will be stored. This is very simple:

$ hg init

Nothing seems to have happened. In fact, the hg init command has created a new subdirectory:

$ ls -a
. .. .hg COBA.py COBAHH.py CUBA.py README.txt

You almost never need to care about what is in this directory: this is where Mercurial will store all the information
about the repository.

2.3.7 Adding files to the repository

Now we need to tell Mercurial which files are part of our project:

$ hg add
ajout de COBA.py
ajout de COBAHH.py
ajout de CUBA.py
ajout de README.txt

$ hg status
A COBA.py
A COBAHH.py
A CUBA.py
A README.txt

2.3.8 Committing changes

These files are now queued to be added to the repository, but they are not yet there. Nothing is definitive until we
make a commit (also known as a “check-in”).

2.3. Version control 11

http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319


Workflows for reproducible research in computational neuroscience, Release 0.3

$ hg commit

This pops me into a text editor where I can enter a message describing the purpose of the commit:

HG: Enter commit message. Lines beginning with ’HG:’ are removed.
HG: Leave message empty to abort commit.
HG: --
HG: user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
HG: branch ’default’
HG: added COBA.py
HG: added COBAHH.py
HG: added CUBA.py
HG: added README.txt

In this case, I am using vi, but you can use any editor.

Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

HG: Enter commit message. Lines beginning with ’HG:’ are removed.
HG: Leave message empty to abort commit.
HG: --
HG: user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
HG: branch ’default’
HG: added COBA.py
HG: added COBAHH.py
HG: added CUBA.py
HG: added README.txt

2.3.9 Viewing the history of changes

The log command lists all the different versions stored in the repository. For now, of course, we have only one:

$ hg log
changeset: 0:ef57b1c87c6a
tag: tip
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 12:33:21 2012 +0200
summary: Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

Now let’s run the code:

$ python COBAHH.py
Network construction time: 0.814524173737 seconds
Simulation running...
Simulation time: 45.7264661789 seconds
126014 excitatory spikes
29462 inhibitory spikes

This pops up a window with the following figure:

12 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

We’d prefer to save the figure to a file for further use, rather than work with the model interactively, so let’s change
the last lines of the script from:

plot(trace.times/ms,trace[1]/mV)
plot(trace.times/ms,trace[10]/mV)
plot(trace.times/ms,trace[100]/mV)
show()

to

plot(trace.times/ms,trace[1]/mV)
plot(trace.times/ms,trace[10]/mV)
plot(trace.times/ms,trace[100]/mV)
savefig("COBAHH_output.png")

2.3.10 Seeing what’s changed

Now if we run hg status we see:

$ hg status
M COBAHH.py

The “M” indicates that the file has been modified. To see the changes:

$ hg diff
diff -r ef57b1c87c6a COBAHH.py
--- a/COBAHH.py Wed Jul 11 12:33:21 2012 +0200
+++ b/COBAHH.py Wed Jul 11 15:56:05 2012 +0200
@@ -93,4 +93,4 @@
plot(trace.times/ms,trace[1]/mV)
plot(trace.times/ms,trace[10]/mV)

2.3. Version control 13



Workflows for reproducible research in computational neuroscience, Release 0.3

plot(trace.times/ms,trace[100]/mV)
-show()
+savefig("COBAHH_output")

Now let’s commit the changes, and look at the log again:

$ hg commit -m ’Save figure to file’
$ hg log
changeset: 1:e323d363742a
tag: tip
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 15:59:02 2012 +0200
summary: Save figure to file

changeset: 0:ef57b1c87c6a
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 12:33:21 2012 +0200
summary: Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

2.3.11 Switching between versions

To switch between versions (you should not do this if you have modified any of the files - commit your changes
first), use hg update:

$ hg update 0
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

This will change the files in your working copy to reflect the state they had when you committed that particular
version.

Using hg summary we can see which version we are currently using:

$ hg summary
parent: 0:ef57b1c87c6a
Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

branch: default
commit: 1 unknown (clean)
update: 1 new changesets (update)

When specifying the version number to switch to, you can use either the short form (a decimal integer, like 0 or
1) or the hexadecimal form (like ef57b1c87c6a). The difference between these two forms is discussed below,
in Collaborating with others.

With no version number, hg update switches to the most recent version:

$ hg up
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg sum
parent: 1:b0275b66ad2b tip
Save figure to file

branch: default
commit: 1 unknown (clean)
update: (current)

Also note that all Mercurial commands can be abbreviated, provided the abbreviation is unambiguous.

2.3.12 Giving informative names to versions

Remembering the version number for a particular version of interest (for example, the version used to generate a
particular figure in your manuscript) can be difficult. For this reason, the hg tag command can be used to give
descriptive and memorable names to significant versions:

14 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

$ hg tag "Figure 1"

Note that this automatically makes a new commit:

$ hg log
changeset: 2:416ac8894202
tag: tip
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 14:28:19 2012 +0200
summary: Added tag Figure 1 for changeset b0275b66ad2b

changeset: 1:b0275b66ad2b
tag: Figure 1
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 16:01:32 2012 +0200
summary: Save figure to file

changeset: 0:ef57b1c87c6a
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 12:33:21 2012 +0200
summary: Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

You can now switch to a tagged version using the tag name:

$ hg update "Figure 1"

2.3.13 Recap #1

So far, we have learned how to:

• Create a repository

• Add files to a repository

• Commit changes

• Move your code-base backwards and forwards in time

These operations are so easy and so useful that there is no reason not to use them for almost any work you do as
a scientist. Any time I start a new project, whether writing code or writing a paper with LaTeX, I now run hg init
as soon as I’ve created a new directory for the project.

2.3.14 Making backups

As well as helping to keep track of different versions of a project, version control systems are hugely useful for
keeping backups of your code with minimal hassle.

Making a copy of your repository is as simple as moving to the location where the backup will be, and then using
the hg clone command.

$ cd /Volumes/USB_DRIVE
$ hg clone ~/my_network_model

$ cd ~/Dropbox
$ hg clone ~/my_network_model

$ ssh cluster.example.edu
(cluster)$ hg clone ssh://my_laptop.example.edu/my_network_model

You can then keep the backup in-sync with the main repository by either using hg pull in the backup location, or
using hg push in your working directory:

2.3. Version control 15



Workflows for reproducible research in computational neuroscience, Release 0.3

$ cd ~/my_network_model
$ hg push /Volumes/USB_DRIVE/my_network_model
pushing to /Volumes/USB_DRIVE/my_network_model
searching for changes
aucun changement trouvé

2.3.15 Working on multiple computers

As an extension of the idea of backups, version control systems are excellent for keeping code in sync between
multiple computers. Suppose you have a copy of your repository on your laptop, and you were working on the
code in the airport.

(laptop)$ hg diff
diff -r 416ac8894202 -r 0467691f7881 CUBA.py
--- a/CUBA.py Thu Jul 12 14:28:19 2012 +0200
+++ b/CUBA.py Thu Jul 12 15:18:09 2012 +0200
@@ -72,4 +72,4 @@
print Me.nspikes,"excitatory spikes"
print Mi.nspikes,"inhibitory spikes"
plot(M.times/ms,M.smooth_rate(2*ms,’gaussian’))

-show()
+savefig("CUBA_output.png")
(laptop)$ hg commit -m ’CUBA script now saves figure to file’

The log on your laptop now looks like this:

(laptop)$ hg log
changeset: 3:0467691f7881
tag: tip
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 15:18:09 2012 +0200
summary: CUBA script now saves figure to file

changeset: 2:416ac8894202
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 14:28:19 2012 +0200
summary: Added tag Figure 1 for changeset b0275b66ad2b

changeset: 1:b0275b66ad2b
tag: Figure 1
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 16:01:32 2012 +0200
summary: Save figure to file

changeset: 0:ef57b1c87c6a
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 12:33:21 2012 +0200
summary: Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

Meanwhile, you’ve started running some simulations on a local cluster, and you’re investigating the effect of
changing some parameters:

(cluster)$ hg diff
diff -r 416ac8894202 CUBA.py
--- a/CUBA.py Thu Jul 12 14:28:19 2012 +0200
+++ b/CUBA.py Thu Jul 12 15:19:49 2012 +0200
@@ -25,9 +25,9 @@
import time

start_time=time.time()
-taum=20*ms
-taue=5*ms

16 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

-taui=10*ms
+taum=15*ms
+taue=3*ms
+taui=5*ms
Vt=-50*mV
Vr=-60*mV
El=-49*mV

(cluster)$ hg commit -m ’Changed time constants in CUBA model’
(cluster)$ hg log
changeset: 3:243c20657dc4
tag: tip
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 15:20:17 2012 +0200
summary: Changed time constants in CUBA model

changeset: 2:416ac8894202
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 14:28:19 2012 +0200
summary: Added tag Figure 1 for changeset b0275b66ad2b

changeset: 1:b0275b66ad2b
tag: Figure 1
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 16:01:32 2012 +0200
summary: Save figure to file

changeset: 0:ef57b1c87c6a
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Wed Jul 11 12:33:21 2012 +0200
summary: Initial version, downloaded from http://senselab.med.yale.edu/modeldb/showmodel.asp?model=83319 on July 21st 2012

Now the repositories on the two machines are out of sync. The first three commits are the same on both, but the
fourth is different on the two machines. Note that versions 0, 1, and 2 have the same hexadecimal version number
on both machines, but that version 3 has a different hex number:

Laptop Cluster
0:ef57b1c87c6a 0:ef57b1c87c6a
1:b0275b66ad2b 1:b0275b66ad2b
2:416ac8894202 2:416ac8894202
3:0467691f7881 3:243c20657dc4

This is the reason for having both the short, integer number and the hex version: the short integer is local to each
machine, while the hex number is global.

So, how do we get the two machines in sync? This can be done from either machine. Here, we’ll do it from the
laptop.

(laptop)$ hg pull -u ssh://cluster.example.edu/my_network_model
pulling from ssh://cluster.example.edu/my_network_model
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
not updating: crosses branches (merge branches or update --check to force update)

Note that hg pull -u is equivalent to running hg pull followed by hg update. “Pull” pulls changes into the local
repository, but does not change the working copy, i.e. it does not change your files. “Update” is the part that
changes your files.

Here, the pull succeeded, but the update failed, because we made two different commits on different machines.

(laptop)$ hg merge
merging CUBA.py

2.3. Version control 17



Workflows for reproducible research in computational neuroscience, Release 0.3

0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don’t forget to commit)

Because Mercurial is clever enough to realize that we’d edited different parts of the file CUBA.py, it can automat-
ically merge the two changes. If there was a conflict (if we’d edited the same lines on both machines), the merge
would fail and we’d have to manually merge the files (see below).

Mercurial does not automatically commit after the merge, so we have the chance to check we are happy with how
Mercurial has merged the files before committing.

(laptop)$ hg commit -m ’merge’

Now we can see the full history, with all changes:

(laptop)$ hg log -r5:2
changeset: 5:12fddba7aaa7
tag: tip
parent: 3:16e621976c95
parent: 4:243c20657dc4
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 15:54:29 2012 +0200
summary: merge

changeset: 4:243c20657dc4
parent: 2:416ac8894202
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 15:20:17 2012 +0200
summary: Changed time constants in CUBA model

changeset: 3:16e621976c95
user: apdavison
date: Thu Jul 12 15:40:04 2012 +0200
summary: CUBA script now saves figure to file

changeset: 2:416ac8894202
user: Andrew Davison <andrew.davison@unic.cnrs-gif.fr>
date: Thu Jul 12 14:28:19 2012 +0200
summary: Added tag Figure 1 for changeset b0275b66ad2b

(Note that we’ve truncated the output by asking for only a subset of the commits).

To complete the sync, we now push the merged repository back to the cluster:

(laptop)$ hg push ssh://cluster.example.edu/my_network_model
pushing to ../my_network_model
searching for changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files

2.3.16 Collaborating with others

Using version control systems to collaborate with others is essentially no different to working solo on multiple
machines, except that you perhaps have less knowledge of exactly what changes have been made by others.

Suppose my colleague Barbara has also been working on the same code: she cloned my repository at version 0,
and since then has been working independently. I’m a little wary of pulling in her changes, so first I can take a
look at what she’s changed:

$ hg incoming /Users/barbara/our_network_model
comparaison avec /Users/barbara/our_network_model
searching for changes

18 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

changeset: 1:40f575c2c5a4
user: Barbara Bara <barbara@example.com>
date: Thu Jul 12 16:16:58 2012 +0200
summary: Changed some parameters in CUBA.py, and saved figure to postscript

changeset: 2:2024998fd5ec
tag: tip
user: Barbara Bara <barbara@example.com>
date: Thu Jul 12 16:17:58 2012 +0200
summary: Save COBAHH figure to postscript

Looks like there may be some problems, since I’ve also changed parameters in that file, and I’m saving figures to
PNG format. Oh, well, deep breath, let’s plunge in:

$ hg pull -u /Users/barbara/our_network_model
pulling from /Users/barbara/our_network_model
searching for changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 2 files (+1 heads)
not updating: crosses branches (merge branches or update --check to force update)

$ hg merge
merging COBAHH.py
warning: conflicts during merge.
merging COBAHH.py failed!
merging CUBA.py
warning: conflicts during merge.
merging CUBA.py failed!
0 files updated, 0 files merged, 0 files removed, 2 files unresolved
use ’hg resolve’ to retry unresolved file merges or ’hg update -C .’ to abandon

Unlike last time, when our changes were in different parts of the file, and so could be merged automatically, here
Barbara has changed some of the same lines as me, and Mercurial can’t choose which changes to keep.

If we now look at CUBA.py, we can see the conflicts marked with <<<<<<< and >>>>>>>:
...
from brian import *
import time

start_time=time.time()
<<<<<<< local
taum=15*ms
taue=3*ms
taui=5*ms
=======
taum=25*ms
taue=5*ms
taui=10*ms
>>>>>>> other
Vt=-50*mV
Vr=-65*mV
El=-49*mV

...

<<<<<<< local
savefig("CUBA_output.png")
=======
savefig("firing_rate_CUBA.eps")
>>>>>>> other

2.3. Version control 19



Workflows for reproducible research in computational neuroscience, Release 0.3

Well, it makes sense for both me and Barbara to explore different parameters, and it makes sense to allow different
file formats, so let’s move the parameters into a separate file, and parameterize the file format. The file now looks
like this:
...
from brian import *
import time
from parameters import TAU_M, TAU_E, TAU_E, FILE_FORMAT

start_time=time.time()
taum = TAU_M*ms
taue = TAU_E*ms
taui = TAU_I*ms
Vt=-50*mV
Vr=-65*mV
El=-49*mV

...

assert FILE_FORMAT in (’eps’, ’png’, ’jpg’)
savefig("firing_rate_CUBA.%s" % FILE_FORMAT)

After manually editing COBAHH.py as well, I need to tell Mercurial that all the conflicts have been resolved,
before I do a commit:

$ hg resolve -m
$ hg add parameters.py
$ hg commit -m "Merged Barbara’s changes; moved parameters to separate file"

I’ve decided to add the new parameters.py to the repository. This means Barbara and I will still have conflicts
in future if we’re using different parameters, but at least the conflicts will be localized to this one file. It might
have been better not to have parameters.py under version control, since it changes so often, but then we need
another mechanism, in addition to version control, to keep track of our parameters. For more on this issue, see the
section on Provenance tracking.

I send Barbara an e-mail to tell her what I’ve done. Now all she has to do is run hg pull -u.

(barbara)$ cd ~/our_network_model
(barbara)$ hg pull -u /Users/andrew/my_network_model
pulling from /Users/andrew/my_network_model
searching for changes
adding changesets
adding manifests
adding file changes
added 6 changesets with 8 changes to 4 files
4 files updated, 0 files merged, 0 files removed, 0 files unresolved

Now she has the new file, parameters.py, as well as the modified versions of CUBA.py and COBAHH.py.

2.3.17 Recap #2

You should now be able to use Mercurial for:

• quick and easy backups of your code

• keeping your work in sync between multiple computers

• collaborating with colleagues

2.3.18 A comparison of Git and Mercurial

Git (http://git-scm.com/) is another popular version control system, which shares many concepts and even com-
mand names with Mercurial. For simple use there is little to choose between them. The main difference is that

20 Chapter 2. Contents

http://git-scm.com/


Workflows for reproducible research in computational neuroscience, Release 0.3

Git has the additional concept of a staging area for arranging exactly what gets committed. With Mercurial, hg
commit will commit all modified files, while with Git, modified files have to be added to the staging area using
git add, otherwise they will not be committed.

The following table shows the approximate equivalence between the most common Mercurial and Git commands.

hg clone <url> git clone <url>
hg diff git diff HEAD
hg status git status
hg commit git commit -a
hg help <command> git help <command>
hg paths git remote -v
hg add git add
hg rm git rm
hg push git push
hg pull git fetch
hg pull -u git pull –rebase
hg revert -a git reset –hard
hg revert <some_file> git checkout <some_file>
hg outgoing git fetch ; git log FETCH_HEAD..master
hg incoming git fetch ; git log master..FETCH_HEAD
hg update <version> git checkout <version>
.hg/hgrc .git/config
.hgignore .gitignore

Read up on both, pick one, although if you collaborate a lot with others you will probably end up using both
anyway.

2.3.19 A comparison of Subversion and Mercurial

Subversion is a centralized, not distributed, version control system, in that the repository sits on a central server
and each user has only a working copy (in contrast to Mercurial and Git, where each user has both repository and
working copy). This means that a network connection is required for operations such as log and commit. It is
apparently not as good at merging as Git, Mercurial.

A few years ago, Subversion was by far the most popular open-source version control system, but it is now losing
ground to distributed tools such as Git, Mercurial and Bazaar.

The following table shows the approximate equivalence between the most common Subversion and Mercurial
commands.

svn checkout <url> hg clone <url>
svn update hg pull -u
svn commit hg commit; hg push
svn log hg log
svn status hg status
svn info hg summary
svn rm hg rm

2.3.20 Graphical tools

As well as the command-line interface, graphical tools are available for all major version control systems. The
following screenshot shows MacHg, a tool for working with Mercurial on Mac OS X: note the graph of branching,
showing where the laptop repository, cluster repository and Barbara’s repository branched off and then were
merged back together.

2.3. Version control 21



Workflows for reproducible research in computational neuroscience, Release 0.3

The following Wikipedia entries may provide good starting points for investigating graphical version control
clients:

• http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

• http://en.wikipedia.org/wiki/Mercurial

• http://en.wikipedia.org/wiki/Category:GIT_Tools

2.3.21 Web-based tools

There are many web-based services for hosting version control repositories, for example Google Code
(http://code.google.com/), Sourceforge (http://sourceforge.net/), GitHub (https://github.com/) and BitBucket
(https://bitbucket.org/). The following table shows which version control systems are supported by these four
services, and whether they provide free private repositories (all support free public repositories):

Service Subversion Mercurial Git Bazaar Free private repositories
Sourceforge x x x x
Google Code x x x
BitBucket x x x
GitHub x

2.4 Testing

2.4.1 How confident are you that your code is doing what you think it’s doing?

When I began learning computational neuroscience and writing code for models and simulations, my programming
experience amounted to no more than one course and one programming assignment using FORTRAN 77, as part
of my undergraduate Physics degree and a short course on image processing and a little ad hoc data processing
using Matlab during my MSc in Medical Physics.

When I wrote code (using Hoc and NMODL, the languages of the NEURON (http://www.neuron.yale.edu/) sim-
ulator) I tested it as I wrote it by running it and comparing the output to what I expected to see, to the results

22 Chapter 2. Contents

http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients
http://en.wikipedia.org/wiki/Mercurial
http://en.wikipedia.org/wiki/Category:GIT_Tools
http://code.google.com/
http://sourceforge.net/
https://github.com/
https://bitbucket.org/
http://www.neuron.yale.edu/


Workflows for reproducible research in computational neuroscience, Release 0.3

of previous simulations (one of my first projects was porting a model from GENESIS to NEURON, so I could
quantitatively compare the output of the two simulators), and, later on, to experimental data.

If I might generalize from my own experience, from talking to colleagues, and from supervising student projects,
this kind of informal, the-results-look-about-right testing is very widespread, especially for the physics- and
biology-trained among us without any formal computer-science education.

2.4.2 Automated testing

Perhaps the biggest flaw of my informal testing regime was that none of the tests were automated. So, for example,
I would test that the height of the excitatory-post-synaptic-potential was what I calculated it should be by plotting
the membrane potential and reading the value off the graph. Each time I changed any code that could have
affected this, I had to repeat this manual procedure, which of course discouraged any thought of making large-
scale reorganisations of the code.

The advantages of creating automated tests are therefore:

• it gives you confidence that your code is doing what you think it is doing;

• it frees you to make wide-ranging changes to the code (for the purposes of optimization or making the code
more robust, for example) without worrying that you will break something: if you do break something, your
tests will tell you immediately and you can undo the change.

Of course, writing tests requires an initial time investment, but if you already perform manual, informal testing
then this time will be paid back the first time you run the automated suite of tests. Even if you did no testing at all
previously, the loss of fear of changing code will lead to more rapid progress.

There is one gotcha to be aware of with automated tests, a risk of false confidence which can lead to a lack of
critical thinking about your results (“if the tests pass, it must be alright”). It is unlikely that your test suite will
test every possible path through your code with all possible inputs, so you should always be aware of the fallibility
of your test procedures, and should expect to add more tests as the project develops.

2.4.3 Terminology

Professional software engineering, where automated testing has been in wide use for a long time, has developed a
rich vocabulary surrounding testing. For scientists, it is useful to understand at least the following three ideas:

unit test a test of a single element of a program (e.g. a single function) in isolation.

system test a test of an entire program, or an entire sub-system.

regression test a test for a specific bug that was found in a previous version of the program; the test
is to ensure that the bug does not reappear once fixed. Regression tests may be unit tests or
system tests.

Generally, you should write unit tests for every function and class in your program. There should in general be
multiple unit tests per function, to test the full range of expected inputs. For each argument, you should test at
least:

• one or more typical values;

• an invalid value, to check that the function raises an exception or returns an error code;

• an empty value (where the argument is a list, array, vector or other container datatype).

It is not always easy to isolate an individual function or class. One option is to create “mock” or “fake” objects or
functions for the function under test to interact with. For example, if testing a function that uses numbers from a
random number generator, you can create a fake RNG that always produces a known sequence of values, and pass
that as the argument instead of the real RNG.

Even though all unit tests pass, it may be that the units do not work properly together, and therefore you should
write a number of system tests to exercise the entire program, or an entire sub-system.

On finding a bug in your program, don’t leap immediately to try to fix it. Rather:

2.4. Testing 23



Workflows for reproducible research in computational neuroscience, Release 0.3

• find a simple example which demonstrates the bug;

• turn that example into a regression test (unit or system, as appropriate);

• check that the test fails with the current version of the code;

• now fix the bug;

• check that the regression test passes;

• check that all the other tests still pass.

2.4.4 Test frameworks

For a typical computational neuroscience project, you will probably end up with several hundred tests. You should
run these, and check they all pass, before every commit to your version control system. This means that running
all the tests should be a one-line command.

If you are familiar with the make utility, you could write a Makefile, so that:

$ make test

runs all your tests, and tells you at the end which ones have failed.

Most programming languages provide frameworks to make writing and running tests easier, for example:

Python unittest (http://docs.python.org/library/unittest.html), nose
(http://nose.readthedocs.org/en/latest/), doctest (http://docs.python.org/library/doctest.html)

Matlab xUnit (http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-
xunit-test-framework), mlUnit (http://sourceforge.net/projects/mlunit/), MUnit
(http://www.mathworks.com/matlabcentral/fileexchange/11306-munit-a-unit-testing-
framework-in-matlab), doctest (http://www.mathworks.com/matlabcentral/fileexchange/28862-
doctest-embed-testable-examples-in-your-functions-help-comments)

C++ CppUnit (http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page), and
many more

Java Junit (http://www.junit.org/), and many more

Also see http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

2.4.5 Examples

Here is an example of some unit tests for PyNN, a Python API for neuronal network simulation. PyNN provides
a module random which provides wrappers for a variety of random number generators, so as to give them all the
same interface so that they can be used more-or-less interchangeably.

import pyNN.random as random
import numpy
import unittest

class SimpleTests(unittest.TestCase):
"""Simple tests on a single RNG function."""

def setUp(self):
random.mpi_rank=0; random.num_processes=1
self.rnglist = [random.NumpyRNG(seed=987)]
if random.have_gsl:

self.rnglist.append(random.GSLRNG(seed=654))

def testNextOne(self):
"""Calling next() with no arguments or with n=1 should return a float."""
for rng in self.rnglist:

24 Chapter 2. Contents

http://docs.python.org/library/unittest.html
http://nose.readthedocs.org/en/latest/
http://docs.python.org/library/doctest.html
http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework
http://sourceforge.net/projects/mlunit/
http://www.mathworks.com/matlabcentral/fileexchange/11306-munit-a-unit-testing-framework-in-matlab
http://www.mathworks.com/matlabcentral/fileexchange/28862-doctest-embed-testable-examples-in-your-functions-help-comments
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://www.junit.org/
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks


Workflows for reproducible research in computational neuroscience, Release 0.3

assert isinstance(rng.next(), float)
assert isinstance(rng.next(1), float)
assert isinstance(rng.next(n=1), float)

def testNextTwoPlus(self):
"""Calling next(n=m) where m > 1 should return an array."""
for rng in self.rnglist:

self.assertEqual(len(rng.next(5)), 5)
self.assertEqual(len(rng.next(n=5)), 5)

def testNonPositiveN(self):
"""Calling next(m) where m < 0 should raise a ValueError."""
for rng in self.rnglist:

self.assertRaises(ValueError, rng.next, -1)

def testNZero(self):
"""Calling next(0) should return an empty array."""
for rng in self.rnglist:

self.assertEqual(len(rng.next(0)), 0)

We define a subclass of TestCase which contains several methods, each of which tests the next() method of
a random number generator object. The setUp() method is called before each test method - it provides a place
to put code that is common to all tests. Note that each test contains one or more assertions about the expected
behaviour of next().

Now, here is an example of a regression test (since it tests a particular bug that was found and fixed, to ensure the
bug doesn’t reappear later) that is also a system test (as it tests many interacting parts of the code, not a single
code unit).

from nose.tools import assert_equal, assert_almost_equal
import pyNN.neuron

def test_ticket168():
"""
Error setting firing rate of ‘SpikeSourcePoisson‘ after ‘reset()‘ in NEURON
http://neuralensemble.org/trac/PyNN/ticket/168
"""
pynn = pyNN.neuron
pynn.setup()
cell = pynn.Population(1, cellclass=pynn.SpikeSourcePoisson, label="cell")
cell[0].rate = 12
pynn.run(10.)
pynn.reset()
cell[0].rate = 12
pynn.run(10.)
assert_almost_equal(pynn.get_current_time(), 10.0, places=11)
assert_equal(cell[0]._cell.interval, 1000.0/12.0)

For this tests we used the nose (http://nose.readthedocs.org/en/latest/) framework rather than the unittest
(http://docs.python.org/library/unittest.html) framework used in the previous example. This test runs a short sim-
ulation, and then, as with unittest (http://docs.python.org/library/unittest.html), we make assertions about what
values we expect certain variables to have.

2.4.6 Test coverage measurement

How do you know when you’ve written enough tests? Tools are available for many languages that will track which
lines of code get used when running the test suite (list of tools at http://en.wikipedia.org/wiki/Code_coverage).

For example, the following command runs the test suite for the PyNN package and produces a report in HTML,
highlighting which lines of the code have not been covered by the test:

2.4. Testing 25

http://nose.readthedocs.org/en/latest/
http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html
http://en.wikipedia.org/wiki/Code_coverage


Workflows for reproducible research in computational neuroscience, Release 0.3

$ nosetests --with-coverage --cover-erase --cover-package=pyNN --cover-html

2.4.7 Test-driven development

As the name suggests, test-driven development (TDD) involves writing tests before writing the code to be tested.

It involves an iterative style of development, repeatedly following this sequence:

• write a test for a feature you plan to add

• the test should fail, since you haven’t implemented the feature yet

• now implement just that feature, and no more

• the test should now pass

• now run the entire test suite and check all the tests still pass

• clean up code as necessary (use the test suite to check you don’t break anything)

• repeat for the next feature

The advantages of TDD are:

• makes you think about requirements before writing code

• makes your code easier to test (written to be testable)

• ensures that tests for every feature will be written

• reduces the temptation to over-generalize (“as soon as the test passes, stop coding”)

Of course, writing more tests takes time, but there is some evidence that the total development time is reduced by
TDD due to its encouragement of better design and much less time spent debugging.

2.5 Provenance tracking

2.5.1 What is provenance?

The term comes originally from the art world, where it refers to the chronology of the ownership and/or location
of a work of art.

Having detailed evidence of provenance can help to establish that a painting has not been altered or stolen, and is
not a forgery. Wikipedia has a nice entry on the provenance of the Arnolfini Portrait by van Eyck.

The provenance (abridged) of the painting is as follows:

1434 painting dated by van Eyck;

before 1516 in possession of Don Diego de Guevara, a Spanish career courtier of the
Habsburgs;

1516 portrait given to Margaret of Austria, Habsburg Regent of the Netherlands;

1530 inherited by Margaret’s niece Mary of Hungary;

1558 inherited by Philip II of Spain;

1599 on display in the Alcazar Palace in Madrid;

1794 now in the Palacio Nuevo in Madrid;

1816 in London, probably plundered by a certain Colonel James Hay after the Battle of
Vitoria (1813), from a coach loaded with easily portable artworks by King Joseph
Bonaparte;

1841 the painting was included in a public exhibition;

26 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

Figure 2.2: The Arnolfini Portrait, by Jan van Eyck

2.5. Provenance tracking 27



Workflows for reproducible research in computational neuroscience, Release 0.3

1842 bought by the National Gallery, London for £600, where it remains.

More recently, the term has been applied to other fields, including archaeology, palaeontology, and science more
generally, where it refers to having knowledge of all the steps involved in producing a scientific result, such as
a figure, from experiment design through acquisition of raw data, and all the subsequent steps of data selection,
analysis and visualization. Such information is necessary for reproduction of a given result, and can serve to
establish precedence (in case of patents, Nobel prizes, etc.)

2.5.2 The lab notebook

(http://www.flickr.com/photos/proteinbiochemist/3167660996/)

Figure 2.3: “Lab bench” by proteinbiochemist on Flickr, CC BY-NC licence.

The traditional tool for tracking provenance information in science is the laboratory notebook.

The problem with computational science is that the number of details that must be recorded is so large that writing
them down by hand is incredibly tedious and error-prone.

What should be recorded for a single run of a computational neuroscience simulation?

• the code that was run:

– the version of Matlab, Python, NEURON, NEST, etc.;

– the compilation options;

– a copy of the simulation script(s) (or the version number and repository URL, if using version control)

– copies (or URLs + version numbers) of any external modules/packages/toolboxes that are im-
ported/included

• how it was run:

28 Chapter 2. Contents

http://www.flickr.com/photos/proteinbiochemist/3167660996/


Workflows for reproducible research in computational neuroscience, Release 0.3

– parameters;

– input data (filename plus cryptographic identifier to be sure the data hasn’t been changed, later);

– command-line options;

• the platform on which it was run:

– operating system;

– processor architecture;

– network distribution, if using parallelization;

• output data produced (again, filename plus cryptographic identifier)

– including log files, warnings, etc.

Even if you are very conscientious, this is a lot of information to record, and when you have a deadline (for a
conference, or for resubmitting an article) there will be a strong temptation to cut corners - and those are the
results where it is most important to have full provenance information.

Of course, some of these data are more important than others, but the less you record, the more likely you are to
have problems replicating your results later on.

The obvious solution for computation-based science is to automate the process of provenance tracking, so that it
requires minimal manual input, effectively to create an automated lab notebook.

In the general case, this is not a trivial task, due to the huge diversity in scientific workflows (command-line or GUI,
interactive or batch-jobs, solo or collaborative) and in computing environments (from laptops to supercomputers).

We can make a list of requirements such a system should satisfy:

• automate as much as possible, prompt the user for the rest;

• support version control, ideally by interacting with existing systems (Git, Mercurial, Subversion, Bazaar
...);

• support serial, distributed, batch simulations/analyses;

• link to, and uniquely identify, data generated by the simulation/analysis;

• support all and any (command-line driven) simulation/analysis programs;

• support both local and networked storage of simulation/analysis records.

2.5.3 Software tools for provenance tracking

A wide variety of software tools has been developed to support reproducible research and provenance tracking
in computational research. Each of these tools takes, in general, one of three approaches - literate programming,
workflow management systems, or environment capture.

Literate programming

Literate programming, introduced by Donald Knuth in the 1980s, interweaves text in a natural language, typically
a description of the program logic, with source code. The file can be processed in two ways: either to produce
human-readable documentation (using LateX, HTML, etc.) or to extract, possibly reorder, and then either compile
or iterpret the source code.

Closely related to literate programming is the “interactive notebook” approach used by Mathematica
(http://www.wolfram.com/mathematica/), Sage (http://www.sagemath.org/), IPython (http://ipython.org/), etc., in
which the output from each snippet of source code (be it text, a figure, a table, or whatever) is included at that
point in the human-readable document.

This is obviously useful for scientific provenance tracking, since the code and the results are inextricably bound
together. With most systems it is also possible for the system to automatically include information about software
versions, hardware configuration and input data in the final document.

2.5. Provenance tracking 29

http://www.wolfram.com/mathematica/
http://www.sagemath.org/
http://ipython.org/


Workflows for reproducible research in computational neuroscience, Release 0.3

Figure 2.4: Donald Knuth

The literate programming/interactive notebook approach is less likely to be appropriate in the following scenarios:

• each individual step takes hours or days to compute;

• computations must be run on parallel and/or remote, time-sharing hardware;

• code is split among many modules or packages (i.e. the front-end, “user-facing” code that is included in the
final documentation is only a small fraction of the total code).

This is not to say that the literate programming approach will not prove to be a good one in these scenarios (IPython
includes good support for parallelism, for example, and many tools provide support for caching of results so only
the code that has changed needs to be re-run), but the current generation of tools are generally more difficult to
use in these scenarios.

The following are some literate programming/interactive notebook tools that are suitable for scientific use:

Sweave Sweave (http://www.statistik.lmu.de/ leisch/Sweave/) “is an open-source tool that allows to
embed the R code for complete data analyses in LaTeX documents. The purpose is to create
dynamic reports, which can be updated automatically if data or analysis change.” Sweave is
specific to the R-language, and is included in every R installation.

Emacs org mode Org-mode (http://orgmode.org/) is a mode for the open-source Emacs editor which
enables tranforming plain text documents into multiple output formats: HTML, PDF, LaTeX,
etc. The Babel extension to org-mode enables mixing of text and code (33 programming lan-
guages supported as of version 7.7). Delescluse et al. (2011) 2 present some examples of using
both org-mode and Sweave for reproducible research.

TeXmacs TeXmacs (http://www.texmacs.org/) is an open-source “wysiwyw (what you see is what
you want) editing platform with special features for scientists”, which allows mixing text, math-
ematics, graphics and interactive content. TeXmacs allows embedding and executing code in
many languages, including Scheme, Matlab and Python.

IPython notebook IPython (http://ipython.org/) is an open-source environment for interactive and
exploratory computing using the Python language. It has two main components: an enhanced
interactive Python shell, and an architecture for interactive parallel computing. The IPython

2 Delescluse M., Franconville, R., Joucla, S., Lieurya, T. and Pouzat, C. (2011) Making neurophysiological data analysis reproducible.
Why and how?, J Physiol Paris 106:159-70.

30 Chapter 2. Contents

http://www.statistik.lmu.de/~leisch/Sweave/
http://orgmode.org/
http://www.texmacs.org/
http://ipython.org/


Workflows for reproducible research in computational neuroscience, Release 0.3

notebook provides a web-browser-based user interface that allows mixing formatted text with
Python code. The Python code can be executed from the browser and the results (images,
HTML, LaTeX, movies, etc.) displayed inline in the browser.

Mathematica notebook Mathematica (http://www.wolfram.com/mathematica/) is proprietary soft-
ware for symbolic and numerical mathematics, data analysis and visualization, developed by
Wolfram Research. It has a notebook interface in which code and the results of executing the
code are displayed together. It was part of the inspiration for the IPython notebook and the Sage
mathematics system also mentioned here.

Sage notebook Sage (http://www.sagemath.org/) is a mathematics software system with a Python-
based interface. It aims to create “a viable free open source alternative to Magma, Maple,
Mathematica and Matlab.” Like IPython, Sage notebooks allow creation of interactive note-
books that mix text, code and the outputs from running code.

Dexy Dexy (http://www.dexy.it/) is “a free-form literate documentation tool for writing any kind of
technical document incorporating code. Dexy helps you write correct documents, and to easily
maintain them over time as your code changes.” Dexy supports multiple programming and text-
markup languages. Dexy is slightly different to the other tools described here in that code lives
in its own files (as in a normal, non-literate-programming approach) and parts (or all) of the
code can then be selectively included in the document.

Figure 2.5: An example of using the IPython notebook

Workflow management systems

Where literate programming focuses on expressing computations through code, workflow management systems
express computations in terms of higher-level components, each performing a small, well-defined task with well
defined inputs and outputs, joined together in a pipeline.

Obviously, there is code underlying each component, but for the most part this is expected to be code written
by someone else, the scientist uses the system mainly by connecting together pre-existing components, or by
wrapping existing tools (command-line tools, webservices, etc.) so as to turn them into components.

Workflow management systems are popular in scientific domains where there is a certain level of standardization
of data formats and analysis methods - for example in bioinformatics and any field that makes extensive use of
image processing.

2.5. Provenance tracking 31

http://www.wolfram.com/mathematica/
http://www.sagemath.org/
http://www.dexy.it/


Workflows for reproducible research in computational neuroscience, Release 0.3

The advantages of workflow management systems are:

• reduces or eliminates the need for coding - pipelines can be built up using purely visual, graphical tools;

• helps with data format conversion;

• decoupling of the specification of a computation from its execution: this allows automated optimisation of
pipeline execution, for example by computing different components in different environments, distributing
components over multiple computing resources, caching previously-calculated results, etc.

The main disadvantage is that where there are no pre-existing components, nor easily-wrapped tools (command-
line tools or webservices), for a given need, writing the code for a new component can be rather involved and
require detailed knowledge of the workflow system architecture.

Figure 2.6: The Taverna Workbench

The following are some workflow management systems in wide use:

Taverna Taverna (http://www.taverna.org.uk/) is an open-source project mainly developed at the
University of Manchester, UK, and related to the myGrid project. It is written in Java, and
uses the OPM (Open Provenance Model) standard to provide provenance information: “which
services were executed, when, which inputs were used and what outputs were produced.” Tav-
erna seems to be particularly widely used in the bioinformatics, cheminformatics and astronomy
communities.

Kepler Kepler (https://kepler-project.org/) is an open-source project developed by a team centred on
the University of California (UC Davis, UC Santa Barbara, UC San Diego). It is written in Java,
and has support for components written in R and Matlab. Kepler seems to be particularly widely
used in the environmental and earth sciences communities. Kepler has an optional provenance
tracking module.

Galaxy Galaxy (http://galaxy.psu.edu/) “is an open, web-based platform for data intensive biomedi-
cal research”, developed mainly by groups at Penn State and Emory University. It appears to be

32 Chapter 2. Contents

http://www.taverna.org.uk/
https://kepler-project.org/
http://galaxy.psu.edu/


Workflows for reproducible research in computational neuroscience, Release 0.3

focused specifically on bioinformatics. Galaxy seems to support provenance tracking through
its “History” system.

VisTrails VisTrails (http://www.vistrails.org/) is an open-source project developed at the University
of Utah, and written in Python. The distinctiveness of VisTrails is that it focuses on exploratory
workflows: the entire history of a workflow is saved, so that it is easy to go back and forth
between earlier and later versions of a workflow. Provenance information can be stored in a
relational database or in XML files. VisTrails also supports a literate programming approach,
providing a LaTeX package that allows links to workflows to be embedded in the document
source. When the document is compiled, the workflow is executed in VisTrails and the output
inserted into the document.

LONI Pipeline LONI Pipeline (http://pipeline.loni.ucla.edu/) is developed by the Laboratory of
Neuro Imaging at UCLA. It is a general purpose workflow management system, but with a
strong focus on neuroimaging applications. Recent versions of LONI Pipeline include a prove-
nance manager for tracking data, workflow and execution history.

CARMEN The CARMEN (http://www.carmen.org.uk/portal) portal, developed by a consortium of
UK universities, is a “virtual research environment to support e-Neuroscience”. It is “designed
to provide services for data and processing of that data in an easy to use environment within a
web browser”. Components can be written in Matlab, R, Python, Perl, Java and other languages.
Provenance tracking does not appear to be automatic, but there is a system that “allows the
generation of metadata from services to provide provenance information”.

Environment capture

The third approach to software tools for provenance tracking is in some ways the most lightweight, has the fewest
restrictions on programming languages supported, and requires the least modification to computational scientists’
existing workflows.

Environment capture means capturing all the details of the scientists’ code, data and computing environment, in
order to be able to reproduce a given computation at a later time.

The simplest approach is to capture the entire operating system in the form of a virtual machine (VM) image. When
other scientists wish to replicate your results, you send them the VM image together with some instructions, and
they can then load the image on their own computer, or run it in the cloud.

The VM image approach has the advantage of extreme simplicity, both in capturing the environment (all virtual
machine software has a “snapshot” function which captures the system state exactly at one point in time) and in
replaying the computation later.

The main disadvantages are:

• VM images are often very large files, of several GB in size;

• there is a risk that the results will be highly sensitive to the particular configuration of the VM, and will not
be easily reproducible on different hardware or with different versions of libraries, i.e. the results may be
highly replicable but not reproducible;

• it is not possible to index, search or analyse the provenance information;

• it requires the original computations to use virtualisation technologies, which inevitable have a performance
penalty, even if small;

• the approach is challenging in a context of distributed computations spread over multiple machines.

An interesting tool which supports a more lightweight approach (in terms of filesize) than capturing
an entire VM image, and which furthermore does not require use of virtualization technology, is CDE
(http://www.pgbovine.net/cde.html). CDE stands for “Code, Data, Environment” and is developed by Philip Guo.
CDE works only on Linux, but will work with any command-line launched programme. After installing CDE,
prepend your usual command-line invocation with the cde command, e.g.:

$ cde nrngui init.hoc

2.5. Provenance tracking 33

http://www.vistrails.org/
http://pipeline.loni.ucla.edu/
http://www.carmen.org.uk/portal
http://www.pgbovine.net/cde.html


Workflows for reproducible research in computational neuroscience, Release 0.3

CDE will run the programs as usual, but will also automatically detect all files (executables, libraries, data files,
etc.) accessed during program execution and package them up in a compressed directory. This package can then
be unpacked on any modern x86 Linux machine and the same commands run, using the versions of libraries and
other files contained in the package, not those on the new system.

The advantages of using CDE are:

• more lightweight than the full VM approach, generates much smaller files

• doesn’t have performance penalty of using VM

• minimal changes to existing workflow (use on your current computers)

The disadvantages are in general shared with the VM approach:

• the risk of results being highly sensitive to the particular configuration of your computer

• the difficulty in indexing, searching or analyzing the provenance information

In addition, CDE works only on modern versions of Linux.

An alternative to capturing the entire experiment context (code, data, environment) as a binary snapshot
is to capture all the information needed to recreate the context. This approach is taken by Sumatra
(http://neuralensemble.org/sumatra).

Note: Sumatra is developed by the author of this tutorial. I aim to be objective, but cannot guarantee this!

The advantages of this approach are:

• it is possible to index, search, analyse the provenance information;

• it allows testing whether changing the hardware/software configuration affects the results;

• it works fine for distributed, parallel computations;

• it requires minimal changes to existing workflows.

The main disadvantages, compared to the VM approach, are:

• a risk of not capturing all the context;

• doesn’t offer “plug-and-play” replicability like VMs, CDE - the context must be reconstructed based on the
captured metadata if you want to replicate the computation on another computer.

An interesting approach would be to combine Sumatra and CDE, so as to have both information about the code,
data, libraries, etc. and copies of all the libraries in binary format.

2.5.4 An introduction to Sumatra

I will now give a more in-depth introduction to Sumatra. Sumatra is a Python package to enable systematic capture
of the context of numerical simulations/analyses. It can be used directly in your own Python code or as the basis
for interfaces that work with non-Python code.

Currently there is a command line interface smt, which is mainly for configuring your project and launching
computations, and a web interface which is mainly for browsing and inspecting both the experiment outputs and
the captured provenance information.

The intention is that in the future Sumatra could be integrated into existing GUI-based tools or new desktop/web-
based GUIs written from scratch.

Installation

Installing Sumatra is easy if you already have Python and its associated tools:

34 Chapter 2. Contents

http://neuralensemble.org/sumatra


Workflows for reproducible research in computational neuroscience, Release 0.3

Setting-up project tracking

Suppose you already have a simulation project, and are using Mercurial for version control. In your working
directory (which contains your Mercurial working copy), use the smt init command to start tracking your project
with Sumatra.

$ cd myproject
$ smt init MyProject

This creates a sub-directory, .smt which contains configuration information for Sumatra and a database which
will contain simulation records (it is possible to specify a different location for the database, or to use an already
existing one, but this is the default).

Capturing experimental context

Suppose that you usually run your simulation as follows:

$ python main.py default.param

To run it with automatic capture of the experiment context (code, data, environment):

$ smt run --executable=python --main=main.py default.param

or, you can set defaults:

$ smt configure --executable=python --main=main.py

and then run simply:

$ smt run default.param

What happens when you do this is illustrated in the following figure:

2.5. Provenance tracking 35



Workflows for reproducible research in computational neuroscience, Release 0.3

Browsing the list of simulations

To see a list of simulations you have run, use the smt list command:

$ smt list
20110713-174949
20110713-175111

Each line of output is the label of a simulation record. Labels should be unique within a project. By default,
Sumatra generates a label for you based on the timestamp, but it is also possible to specify your own label, as well
as to add other information that might be useful later, such as the reason for performing this particular simulation:

$ smt run --label=haggling --reason="determine whether the gourd is worth 3 or 4 shekels" romans.param

(see Monty Python’s Life of Brian to understand the gourd reference).

After the simulation has finished, you can add further information, such as a qualitative assessment of the outcome,
or a tag for later searching:

$ smt comment "apparently, it is worth NaN shekels."
$ smt tag “Figure 6”

This adds the comment and tag to the most recent simulation record. If you wish to annotate an older record,
specify its label (this is why labels should be unique):

$ smt comment 20110713-174949 "Eureka! Nobel prize here we come."

To get more information about your simulations, the smt list command takes various options:

$ smt list -l
--------------------------------------------------
Label : 20110713-174949
Timestamp : 2011-07-13 17:49:49.235772
Reason :
Outcome : "Eureka! Nobel prize here we come."
Duration : 0.0548920631409
Repository : MercurialRepository at /path/to/myproject
Main file : main.py
Version : rf9ab74313efe
Script arguments : <parameters>
Executable : Python (version: 2.6.2) at /usr/bin/python
Parameters : seed = 65785

: distr = "uniform"
: n = 100

Input_Data : []
Launch_Mode : serial
Output_Data :[example2.dat(43a47cb379df2a7008fdeb38c6172278d000fdc4)]
Tags :
.
.
.

But in general, it is better to use the web interface to inspect this information. The web interface is launched with:

$ smtweb

This will run a small, local webserver on your machine and open a new browser tab letting you see the records in
the Sumatra database:

36 Chapter 2. Contents



Workflows for reproducible research in computational neuroscience, Release 0.3

2.5. Provenance tracking 37



Workflows for reproducible research in computational neuroscience, Release 0.3

Replicating previous simulations

To re-run a previous simulation, use the smt repeat command:

$ smt repeat haggling
The new record exactly matches the original.

This command will use the version control system to checkout the version of the code that was used for the original
simulation, run the simulation, and then compare the simulation outputs to the outputs from the original.

It does not attempt to match the rest of the environment (versions of libraries, processor architecture, etc.) and so
this is a useful tool for checking the robustness of your results: if you have upgraded some library, do you still get
the same results?

If the output data do not match, Sumatra will provide a detailed report of what is different between the two
simulation runs.

Getting help

Sumatra has full documentation at http://packages.python.org/Sumatra/. The smt command also has its own built-
in documentation. With no arguments it produces a list of available subcommands, while the smt help command
can be used to get detailed help on each of the subcommands.

$ smt
Usage: smt <subcommand> [options] [args]

Simulation/analysis management tool, version 0.4

Available subcommands:
init
configure
info
run
list

38 Chapter 2. Contents

http://packages.python.org/Sumatra/


Workflows for reproducible research in computational neuroscience, Release 0.3

delete
comment
tag
repeat
diff
help
upgrade
export
sync

Finding dependencies

Most of the metadata captured by smt is independent of the programming language used. Capturing the code
dependencies (versions of software libaries, etc.) does however requires a per-language implementation.

Sumatra currently supports: Python, Hoc (the language for the NEURON simulator) and the script language for
the GENESIS 2 simulator. Support for Matlab, Octave, R, C and C++ is planned.

Version finding is based on various heuristics:

• some language specific (e.g. in Python check for a variable called __version__ or a function called
get_version(), etc.)

• some generic (e.g. where dependency code is under version control or managed by a package manager)

Linking to input and output data

Part of the information Sumatra stores is the paths to input and output data. Currently, only data on the local
filesystem is supported. In future, we plan to support data from relational databases, web-based databases, etc.)
Sumatra stores the cryptographic signature of each data file to ensure file contents at a later date are the same as
immediately after the simulation (this will catch overwriting of the file, etc.).

Record stores

Sumatra has multiple ways to store experiment records, to support both solo/local and collaborative/distributed
projects:

• for local or network filesystems, there is a record store based on SQLite

• for collaboration over the internet, there is a server application providing a remote recordstore communicat-
ing over HTTP

Version control support

Sumatra requires your code to be under version control. Currently supported systems are Subversion, Git, Mercu-
rial and Bazaar.

Summary

In summary, Sumatra (http://neuralensemble.org/sumatra) is a toolbox for automated context capture for compu-
tational experiments. Basic metadata is captured for any language, logging dependencies requires a language-
specific plugin.

Using the smt command:

• requires no changes to existing code

• requires minimal changes to your existing workflow

thus, we hope, meeting our original criterion of:

2.5. Provenance tracking 39

http://neuralensemble.org/sumatra


Workflows for reproducible research in computational neuroscience, Release 0.3

“Be very easy to use, or only the very conscientious will use it”

2.5.5 References

2.6 Conclusions

I hope I have convinced you, if you were unconvinced already,

• that reproducibility of computational research is:

– important;

– often not easy to achieve (or not as easy as it should be);

• that independent reproducibility and replicability are both important.

Even if you choose not to share your code with others, investing the effort to improve replicability of your results
will pay dividends:

• when you have to modify and regenerate figures in response to reviewers’ comments;

• when a student graduates and leaves the lab;

• when you want to start a new project that builds on existing work;

• and it could save you from painful retractions

• or from crucifiction in the media!

There are already many tools, for version control and provenance tracking, that can help to address the problems
of complexity, entropy, memory that we have identified. I hope that this tutorial has been a good starting point for
choosing the tool that best fits your own preferred workflow, or has inspired you to change your current workflow.
None of the tools is perfect - why not help to improve them, or develop your own? (but don’t reinvent the wheel).

The slides for this tutorial are available on Dropbox (http://dl.dropbox.com/u/730085/rr_tutorial_cns2012_davison.pdf).

The sources for these notes are at https://bitbucket.org/apdavison/reproducible_research_cns/

Feel free to share, to modify and to reuse these notes, provided you give attribution to the author, and include a
link to this web page (Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/3.0/)).

Feedback would be very much appreciated. If you find an error or omis-
sion in these notes, or wish to suggest an improvement, you can create a ticket
(https://bitbucket.org/apdavison/reproducible_research_cns/issues?status=new&status=open) or you can contact
the author directly:

• by e-mail (davison@unic.cnrs-gif.fr (davison@unic.cnrs-gif.fr))

• via my website (http://andrewdavison.info)

• or as @apdavison on Twitter (https://twitter.com/apdavison).

40 Chapter 2. Contents

http://dl.dropbox.com/u/730085/rr_tutorial_cns2012_davison.pdf
https://bitbucket.org/apdavison/reproducible_research_cns/
http://creativecommons.org/licenses/by/3.0/
https://bitbucket.org/apdavison/reproducible_research_cns/issues?status=new&status=open
mailto:davison@unic.cnrs-gif.fr
http://andrewdavison.info
https://twitter.com/apdavison


CHAPTER

THREE

LICENCE

This document is licenced under a Creative Commons Attribution 3.0 licence
(http://creativecommons.org/licenses/by/3.0/). You are free to copy, adapt or reuse these notes, pro-

vided you give attribution to the author, and include a link to this web page.
(http://creativecommons.org/licenses/by/3.0/)

41

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Workflows for reproducible research in computational neuroscience, Release 0.3

42 Chapter 3. Licence



CHAPTER

FOUR

SOURCES

https://bitbucket.org/apdavison/reproducible_research_cns - feel free to fork the repository!

43

https://bitbucket.org/apdavison/reproducible_research_cns

